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The microscopic description of quark-gluon plasma (QGP), a strongly interacting medium where
quarks and gluons are deconfined, is a fundamental objective in studying the phases of matter emerging
from Quantum Chromodynamics (QCD). Heavy-flavor (HF) particles, i.e., charm and bottom quarks, are
excellent probes for investigating the properties of QGP in ultrarelativistic heavy-ion collisions [1-3]. In
particular, the in-medium properties of quarkonia, bound states of heavy quarks and antiquarks, offer unique
insights into the QGP because they are closely related to the QCD force [4-6]. Toward this end, recent
lattice-QCD (IQCD) studies have provided novel data on the Wilson line correlators (WLCs) (correlation
functions of a static quark-antiquark pair) at finite temperature [7], which can be analyzed using theoretical
models for the interactions between particles in QGP. It turns out that these IQCD results cannot be
described by perturbative approaches [7], calling for non-perturbative methods like the thermodynamic T-
matrix approach.

The T-matrix approach is a quantum many-body formalism that enables a self-consistent
calculation of 1- and 2-body correlation functions in a strongly coupled QGP [8-10], encompassing both
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FIG. 1. The first cumulant of WLCs from the self-consistent T-matrix calculations (lines) as a function of
imaginary time at different temperatures and distances, compared to the 2+1-flavor IQCD data [7].

bound states and scattering processes. The key input to this approach is the in-medium potential which has
been constrained by static heavy-quark (HQ) free energies and Euclidean correlators in previous work [11].
Here we revisit these results using constraints from IQCD data on WLCs and the QGP equation of state
[12].
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We have found that with an in-medium Cornell potential that is less screened at higher temperatures
than previously (specifically for the long-range confining force), one can achieve a good agreement with
IQCD data, cf. Fig.1. The underlying in-medium potential, displayed in the left panel of Fig. 2, features
remnants of the confining force up to rather large distances. This has significant consequences for the
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FIG. 2. Left panel: The in-medium potentials used in the T-matrix as a function of distance at different
temperatures. Right panel: The spatial diffusion coefficients for charm, bottom and static quarks in comparison
with 2+1-flavor lattice data [13,14]. The free energy-based results are from Ref. [11].

thermal relaxation rate, A(p,T) of heavy quarks, which shows a stronger temperature dependence than in
our previous results based on HQ free energies. On the other hand, the predicted HQ spatial diffusion
coefficient, which relates to the zero-momentum limit of the relaxation rate as Ds= T/(Mq A(0)), exhibits a
weaker T-dependence, in good agreement with recent IQCD results, cf. right panel in Fig. 2. Applications
of these results to phenomenological studies in heavy-ion collisions are underway.
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